

Presentation to H S H HEREDITARY PRINCE ALOIS Prince of Liechtenstein

February 26, 2008

By

Prof. Dr. Firouz Shahrokhi, President

Innovators in Clean Alternative Energy

Primary Goal

Delivery of secure, safe, reliable, environmentally friendly technology at competitive cost through high-volume manufacturing

"... the most significant initiative in distributed secure and clean power generation of the 21st century..."

Rocco Guarnaccia, CEO

On the Leading Edge of Technology

Some of PowerAvenue's More Than 40 Innovations and Patents

(Patent numbers in parentheses)

- Method for producing silicon (WO 03/059814)
- Method for production of silicon nitride (WO 02/090254)
- Method for generation of energy (WO 02/090257)
- Method for producing hydrogen (WO 2004/052774)
- Fuel cell and fuel cell arrangement (DE 298 03 325.9)
- Device for energy transformation having at least one fuel cell and/or one hydrolyzer (DE 199 16 243.3)
- Differential pressure security valve (DE 100 53 609.3)

- Elongated fuel cell having cross channels for gas supply (DE 102 01 149.4)
- Fuel cell with an internal chamber, in which a gas storage device is placed (DE 102 00 222.3)
- Air-heating device with fuel cell (EP 03 000 250.5)
- Device for providing hydrogen using silicon and/or aluminum and water
 - (DE 10 2006 002394)
- Method of operating a fuel cell, and device having a fuel cell (DE 10 59 410.7)
- Fuel cell with an internal chamber, in which a gas storage device is placed (EP 02 029 001.1)

Leonardo DaVinci's

... in the tradition of the greatest innovators and visionaries throughout history ...

The Company

PowerAvenue was formed in 2002 to become mass manufacturer of secure and clean power

PowerAvenue's focus is on Proton Membrane Exchange (PEM) fuel cells due to their;

- operation at low pressure and temperatures,
- high power-to-weight ratio, and
- reliability and efficiency

Decentralized Modular Point-of-Use Power Delivery Systems

'Hydrogen is the fuel of the future' President Bush, Earth day, 22 April 2006

- Hydrogen is the most abundant element in the universe and third most abundant on earth
- Hydrogen IS NOT toxic, corrosive, radioactive, polluting, or carcinogen
- Hydrogen has the highest energy density (per mass) compared to other traditional fuels
- Hydrogen is NOT burned in a fuel cell
- Hydrogen can be produced from variety of feedstock using proven technologies

G. Schröder, R. Prodi, E. Stoiber; HYFORUM 2000:

The most urgent challenges facing the just beginning new century are focussing on the fields of health, food and **energy**

... in Numbers and Statements

- Within one day, mankind burns more carbon, oil and natural gas than being formed within a thousand years in history of earth. In forty years the need of energy will be twice as much (Greenpeace)
- Step by step the earth runs out of oil (Fritz Varenholt, Shell AG)

 The problem with the green house gas (CO₂) (HYFORUM 2000)

Resources in carbon based energy

The FUTURE is ...

Statement of the Energy Departement, Washington DC, July 2002: ... we are looking for "revolutionary" new energy production schemes, being convinced that "incremental" progress and all of the conventional approaches to fuel cells, photovoltaics, fossil fuels etc., aren't going to be sufficient for the future. Simply, our need is a secondary energy carrier, which is transportable without hazards.

full of problems

HYFORUM 2000: The energy carrier of the new century is hydrogen

(Patronage: G.Schröder, R. Prodi, E. Stoiber)

Alternative Fuels

- **OIL** : Limited supply, Pollution issues
- COAL: More abundant, but more pollutingsome problems solved using <u>clean coal tech</u>

Natural Gas : Limited supply, clean, transport problems

Bio-diesel : "Replacing food for fuel, energy intensive to produce, low altitude ozone issues

Alternative Energy

Solar: Location dependent, Land use intensive, Low energy density

Wind: Location dependent, Land use intensive, Low energy density

> Geothermal: Limited supply Pollution issues Location sensitive

Nuclear:Clean EnergyPolitical and security issuesMajor Waste Disposal problems

Private and Confidential

Hydrogen Economy cannot be developed by itself

- Evolution of energy vectors from 1850 up to date
- Experience on hydrogen as an "alternative" energy source in 70s was negative
- Why hydrogen comes out again?
- **Barriers to the market**
 - Therefore, the transition process towards the hydrogen-economy should be adopted

How We Produce Hydrogen NOW

Electrolysis

Simple Concept BUT Not practical

The process is very energy Intensive. It requires more energy to produce hydrogen than other competing processes

A Better Approach : Hydrogen from Sand

- Silicon (via sand) second most abundant element on Earth's crust
- Sun is used to purify Si to 98%
- Water is used to produce H₂ from Si
- The resulting products are SiO₂ and pure water

New Way of Using Hydrogen

Non-burning of H2 –

Hydrogen in not burnt in a fuel Cell as with fossil fuels, but instead its electron is separated to generate electricity

Sample reactions

Does Hydrogen Measure up?

• Fuel cells powered by pure hydrogen emit no harmful pollutants.

Pound for pound hydrogen holds more energy

Hydrogen 52,000 BTU/lb (120 kJ/g) Gasoline 19,000 BTU/lb (43.5 kJ/g)

Energy yield of hydrogen		
1 kg of H_2	115,000 BTU	
1 kg of H ₂	33.3 kWh	
1 kg of H ₂	120 MJ	

Fuel efficiency comparison

1	gal	of	gasoline			25	mi
1	gal	of	hydrogen	(1	kg)	60	mi

Comparison to other fuels		
Fuel (kg)	Output (kWh)	
gasoline	13.0	
methanol	5.6	
propane	12.9	
ethanol	7.5	
butane	12.7	
natural gas	13.9	
HYDROGEN	33.3	

Additional Technical Information ...

Production of 1 MW of Electricity*			
Reactants	Consumption rate kg/h	Consumption rate metric tons/yr	
Sand	900	8000	
Silicon	400	3700	
H2	60	535	
Water	556 (liters/h)	5,000,000 liters per year	

- 1 kg of pure silicon (Si) can be extracted from 2 kg of SiO₂ ("clean sand")
- 1 kg of hydrogen is obtained from 7 kg of silicon, or
- 1 kg of hydrogen is obtained from 14 kg of sand, or

1 kg of sand yields 2.4 kWh of energy

Operational Hydrogen Requirements (Fuel cell efficiency – 50%)		
Power output (kW)	Mass rate (g/min)	Volume rate (Liters/min)
1	1	11
5	5	56
10	10	112
15	15	167
50	50	556
100	100	1,120

Fuel	Energy [kJ/g]	Energy [kJ/l]
Coal	29.3	
Brown coal	8.1	
Wood	14.6	
Gasoline	43.5	30,590
Diesel	42.7	29,890
Methanol	19.6	15,630
Natural gas	50.0	31.7
Hydrogen	119.9	10

Power Conversion and Applications		
Power rating	applications	hp
15 – 100 W	small electronics, toys, etc.	
1.5 kW – 2.5 kW	bicycles, scooters, golf carts, fork lifts	2 - 3.3
5 kW	stationary units, houses, campers, at 110 V, provides 45 Amps (typical homes use about 40 amps at a given time); several modules can provide typical power	6.7
100 kW	high power, compact size applications typical ¹ / ₂ ton truck uses two 100-kW (total of 268 hp) units	134

Hydrogen Conversions and Facts		
1 mole of H ₂	2 g	
1 mole of H ₂	22.4 L	
Heat of combustion	242 kJ/mol (LHV)	
1 standard ft ³ of H ₂	2.53g	

15 kg of Sand yields 1 kg of Hydrogen

Hydrogen Fuel Cells

Advantages:

- Direct energy conversion
- No emission
- High Efficiency
- No moving parts
- Quiet operation
- High reliability
- Rapid response to load fluctuations

lypes:

- Alkaline
- Proton Exchange Membrane (PEM)
- Direct Methanol
- Phosphoric Acid
- Molten carbonate
- Solid oxide

The Fuel Cell Technology

PowerAvenue Fuel Cells

MANY ADVANTAGES OF FUEL CELLS

- Direct energy conversion, no combustion
- No emissions
- High efficiency
- No moving parts
- Quiet operation
- High reliability
- Rapid response to load fluctuations
- Siting ability, limited infrastructure needed

500 W TECHNICAL SPECIFICATIONS

Design: Air Supply: Cooling: Nominal Power: Nominal Voltage: Active Area: Dimensions: Weight: FFC Foil-Fuel Cell Fan only Water cooling 500 Watt 23-12V DC without DC/DC 119 cm² 260 x 130 x 106 mm³ 3 kg

Products and Solutions

Portable Products	Stationary Products
Portable Generator	Bungalow Primary Power
 CPS, Video Equipment 	 Residential Primary Power
Bicycle	 Neighborhood Generator
 Recreational Vehicles 	 Small Power Plant
 Forklift 	 Medium Power Plant
Gardening	 Hospital, Clinic
 Solar Back-Up 	IT, Telecom Premium Power
• Toys	 Mobile Trailer Back-Up Power
Wheel Chair	
Golf Cart	
Scooters	
 Shipyard vehicles 	Special Applications
Pure Oxygen Production	
 Mining Lights 	 Utensils
 Wind Back-Up 	 Biomedical Equipment
 Shopping Cart 	 Clean Cars (SUV)

Applications of Fuel Cells

Zero-Emission Scooter

PowerAvenue Corp is currently collaborating with an industry leader in zeroemission scooter products. These scooters utilize a 1,500 W brushless wheel motor that may be supplied by three 500 W PowerAvenue hydrogen fuel cells or a dedicated 1.5 kW cell. Using hydrogen fuel cells will eliminate the disadvantage of battery-operated scooters in terms of range and charging time.

- Environmentally friendly
- Easy handling
- Max speed of 60 km/h
- Hydraulic disc brakes
- 10 in. wheel rims
- Weight of approximately 100 kg

Stationary Power Systems

PowerAvenue: 1 kW to 25 kW

Applications: Homes, Business, Hospital Hotel, School, Emergency Power

Projected Stationary Fuel Cell Power Market

Data Centers

PowerAvenue Corp.

Silicon/Hydrogen fuel Power Plant

The following data are for conversion of Silicon to Hydrogen and the use of Hydrogen in a H2 burning gas turbine to generate electricity. Since many of the process and component efficiencies are not well known, a 50% overall efficiency has been assumed for the entire process. This number maybe on the optimistic side since most fossil-fuel power plants operate at below 40% cycle efficiency.

Silicon Consumption	1MW	10MW	50MW	100 MW
Si consumption per hour	220 kg	2.22 tons	11.1 tons	22.2 tons
Si consumption per day	5400 kg	54 tons	270 tons	540 tons
Si consumption per year	1940 tons	19,400 tons	97,000 tons	194,000 tons

Private and Confidential

Avoided CO₂ for each hydrogen hub

	Installation Forecast electric power 800 MW		
Hydrogen Hub	Vehicles ~ 2,500 buses		
Silicon Fuel based	~ 25,000 cars		
	2.3 – 2.7 million ton CO_2 /year		

	Installation Forecast electric power 50 MW
Hydrogen Hub	Vehicles ~ 1,300 buses
Fuel based	~ 13,000 cars
	0.3 million ton CO ₂ /year

In the 21st century, nations must optimize use of lowquality fossil fuels and sustainable-source energy while giving equal consideration to resource depletion, environment protection, and the varying economic considerations affecting all nations. Because these three factors -- energy, environment, and economy -- are interdependent, advances in one must be compatible with the others.

Energy Balance for a Hydrogen-Fueled Turbine

Hydrogen Combustion Turbine

5 MW Hydrogen Burning Plant

40 m

1 MW Power Plant

To be developed by PowerAvenue Corporation (poweravenuecorp.com) in cooperation with CO-VER Holding Industries (www.cover.it)

MW Power System,
 parallel 34 kW Modules.
 Ten Systems of 102 kW each

Dimension (each 34 kW system) <u>1 m x 0.6 m x 0.5 m/ system</u> Start up time: 10 sec, full power In 2 minutes

Overall Layout

OVERALL LAYOUT AND ACCESS SPACE

Hydrogen utilization Critical steps

2004-2011

Hydrogen Turbine	Commercial Units
Stationary Fuel Cells	Distributed Generation
Automotive Fuel Cells	City Buses and Dedicated Cars
	Logistics

Renewable Energy Based On Silicon

Today's Energy:

based on Carbon technology

Tomorrow's Energy:

based on Hydrogen technology

- How can you provide *ENERGY* without damaging the planet?
- PowerAvenue Corp. provides solution, security and reliability with HYDROGEN without damaging capacity to power delivery systems.
- In addition, addressing efficiency to optimize the use of capital to meet return on assets (ROA) and return on investment (ROI)

Liechtenstein:

Europe's First Clean Energy Nation

